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SUMMARY
The objective of this paper is to describe an automatic velocity analysis method based on Reverse Time
Migration and Differential Semblance Optimization. The velocity analysis is based on the solution of a
nonlinear least squares problem aiming at the focusing of offset domain common image point gathers
constructed by Reverse Time Migration. Because the method is based on the solution of the two-way wave
equation, it can deal with strong and sharp velocity contrasts both in a stable and accurate manner. It is
therefore expected that this method will help improve seismic imaging over complex geological settings.
We illustrate the method with a simple synthetic 2D seismic example.



Introduction

Reverse Time Migration (RTM) (Baysal et al., 1983) has, during recentyears, become an important
tool for imaging subsurface structures characterized by complex velocityfields. The image quality is
strongly dependent on the properties of the employed velocity model, which routinely is built through
a combination of ray-based tomography and a range of trial-and-error procedures. Tarantola (1984)
introduced waveform inversion, which aims at automatic estimation of velocity models by minimizing
the error between simulated synthetic data and observed data.

An alternative to Tarantola (1984)’s method was introduced by Biondi andSava (1999) which sug-
gested to perform velocity analysis by minimizing errors in the image space by using one-way migra-
tion schemes. A problem with both Biondi and Sava (1999) and Tarantola (1984)’s approaches is the
reliance on the validity of the born approximation, which can limit the utility of the methods (Weibull
and Arntsen, 2010) unless additional measures are taken (Sava and Biondi, 2004).

Shen et al. (2003) and Shen and Symes (2008) suggested to use an error function based on differential
semblance (Symes and Carazzone, 1991) which reduces, but do not completely overcome, the problems
caused by the Born approximation. Shen and Symes (2008)’s method relieson a one-way shot-migration
algorithm, which in principle can be extended to a two-way reverse-time migrationalgorithm, as sug-
gested by Gao and Symes (2009). However, a straightforward implementation of migration velocity
analysis based on two-way reverse time migration and differential semblance, leads to an algorithm with
non-optimal convergence properties.

In this paper we show that by modifying the imaging condition with a differential operator, a stable
RTM differential semblance algorithm with better convergence properties isobtained, as illustrated with
simple synthetic examples.

Theory and Method

The objective of Differential Semblance Optimization (DSO) is to estimate an unknown velocity field by
focusing the energy of offset domain Common Image Points (CIPs) at zerooffset, which is equivalent
to flattening the angle domain CIPs (Shen and Symes, 2008).

We start by defining our differential semblace misfit function:

DS=
1
2
‖h∆zR‖

2 =
1
2

∫

dx
∫

dh
∫

dz h2(∆zR(x,h,z))
2
, (1)

where,h is the subsurface half-offset,x, z are spatial coordinates,R is the migrated image volume, and
∆z is a first order derivative filter operator, such that:

∆zR(x,h,z) = R(x,h,z)−R(x,h,z−∆z), (2)

with ∆zR(x,h,0) = 0 and∆z is the vertical depth interval.

In reverse time migration,R is contructed according to the multi-offset crosscorrelationimaging condi-
tion (Rickett and Sava, 2002):

R(x,h,z) = ∑
s

∑
t

U(x+h,z, t,s)D(x−h,z, t,s). (3)

Wheres represents the source index,t is the time index,D is the forward modeled source wavefield, and
U is the reflected wave field, reverse time extrapolated from the receivers.

The velocity analysis consists of minimizing equation 1 with respect to the P-wavevelocityc(x,z). One
of the advocated properties of equation 1 is its convexity, which allows optimization by gradient based
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methods (Symes, 2008). Thus, all that needs to be computed is the the gradient of the misfit function
with respect to velocity.

The derivative of equation 1 with respect to velocityc(x,z) can be efficiently computed through the
adjoint state method (Chavent, 2009). The gradient is then given by:

∇cDS(x,z) = −∑
s

∑
t

2
c3(x,z)

∂ 2D
∂ t2 (x,z, t,s)D′(x,z, t,s), (4)

−∑
s

∑
t

2
c3(x,z)

∂ 2U
∂ t2 (x,z, t,s)U ′(x,z, t,s), (5)

whereU ′(x,z, t,s) andD′(x,z, t,s) are adjoint states associated with the constraints that the direct states
U andD must satisfy the isotropic constant density acoustic wave equation.

By introducing the Green’s function:

(

1
c2(x,z)

∂ 2

∂ t2 +∇2
)

g(x,z, t;x′,z′, t ′) = δ (x−x′)δ (z−z′)δ (t − t ′), (6)

D′ andU ′ are then found to be the solutions of two simulations:

D′(x,z, t,s) =
∫
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∫
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, (7)

U ′(x,z, t,s) =
∫

dx′
∫

dz′ g(x,z, t;x′,z′,0)∗

(

∫

dh h2∆2
zR(x′−h,h,z′)D(x′−2h,z′, t,s)

)

, (8)

where∗ denotes time convolution, and∆2
z is a second order centered finite difference operator such that:

∆2
zR= R(x,h,z+∆z)−2R(x,h,z)+R(x,h,z−∆z), (9)

with ∆2
zR(x,h,0) = ∆2

zR(x,h,NZ) = 0.

Equation 7 is to be solved in reverse time, while equation 8 is to be solved in forward time.

A step by step procedure to compute the gradient follows:

1. ConstructR, and at the same time store the direct statesU andD for each shot.

2. Perform the two simulations for each shot, according to equations 7 and 8, to compute the adjoint
statesD′ andU ′, and at each time step use equations 4 and 5 to build, respectively, the source and
receiver parts of the gradient.

3. Stack the source and receiver parts of the gradient over all shots toobtain the full gradient.

Example

We illustrate the method with a synthetic 2D seismic example. The example is interesting because it
shows the potential of the method to improve an image even when the initial model is very far from the
true model, but at the same time it shows some of the associated pitfalls.

The true velocity model is shown in figure 1A. It consists of a layered model3.6km long and 900 m deep,
with a small structure in the middle. The top of the structure coincides with the center of a low velocity
lens, where velocities are reduced by up to 500 m/s. The data consist of 181 shots simulated at the top of
the model, with 20 m spacing. The source is a Ricker wavelet with dominant frequency of 25 Hz. The
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Figure 1 (A)-True velocity model;(B)-Initial velocity model; (C)- Updated velocity model after 50
iterations;(D)- RTM Image produced using true velocity model;(E)- RTM image produced using initial
velocity model;(F)-RTM Image produced using updated velocity model after 50 iterations.

receiver line consist of 361 receivers fixed at the top of the model with 10 meter spacing between the
receivers and recording length of 1.75 seconds. The data is simulated withabsorbing boundaries at all
sides. Preprocessing consists of subtracting the direct wave, FK filtering to remove highly diping plane
waves and refractions.

The initial model for the DSO consists of a smoothed version of the layered model, where the structure
and the low velocity lens are ignored (fig.1B).

Equation 1 is optimized using a limited memory quasi-Newton method (Nocedal and Wright, 2000). No
regularization is used, but the gradient is low pass filtered with zero gain atthe nyquist wavenumber.
This is to remove effects of numerical dispersion. The velocity model after 50 updates is shown in
figure 1C. We can see that it compares favourably with the true velocity model.Some considerations
have to be taken though: The velocity seems to be updated mainly in the region where there is enough
angle coverage, which is a consequence of our simulated acquisition geometry. Another consideration
is with respect to the resolution attainable by velocity analysis by DSO, which is clearly limited by the
bandwidth of the seismic data. But to what extent it is so, would be the subjectof more research.

Figures 1D, 1E, and 1F show a comparison of the RTM images computed usingthe true, initial and
updated velocities. While Figure 2 shows similar comparison of the CIPs atx = 1.8km. The images
clearly show that the updated velocity model substantialy improves the image. The CIPs show that
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Figure 2 (A)-Offset domain (top) and angle domain (bottom) CIPs at x= 1.8km, computed using the
true velocity model;(B)-Same as (A) but using initial velocity model;(C)- Same as (A) but using the
updated velocity model after 50 iterations;D- Velocity profiles (top) and reflectivity profiles (bottom) at
x= 1.8km.

optimization improves focusing of the offset domain CIPs, and consequentlythe flattening of corre-
sponding angle domain CIPs. Figure 2D also shows vertical profiles of thevelocity (top) and zero offset
reflectivity (bottom), for spatial positionx= 1.8km.

Conclusions

Introducing a vertical differentiation operator in the differential semblance misfit function allows for
automatic velocity analysis using RTM. This should in principle allow for more accurate and stable
velocity analysis in areas of strong velocity contrasts. Our simple example illustrates the capability of
RTM based DSO to improve the image even when the initial velocity model is far from the true model.
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